806 research outputs found

    How Mediterranean Deciduous Trees Cope with Long Summer Drought? The Case of Quercus pyrenaica Forests in Western Spain.

    Get PDF
    The functional characteristics of Mediterranean deciduous trees provide an interesting model for investigating adaptative mechanisms to drought, useful to understand future changes of northern forests in scenery of climate change. In this article we analyse how a Mediterranean deciduous oak, Quercus pyrenaica, with a short vegetative period coincident with summer drought, cope with water deficit in that period. We revised published data on temporal dynamic of soil moisture and physiological status of tree leaves of several forest stands of Central–Western Spain and discuss the significance of soil water reserve and deep rooting system on the maintenance of tree transpiration and physiological activity of the trees along summer drought. Results revealed that (i) Q. pyrenaicaoak is only slightly water-limited during summer drought, (ii) Q. pyrenaicaoaks depend on thick weathered, porous bedrocks, and (iii) Q. pyrenaicais a well-performing deciduous oak to cope with increasing summer drought.Peer reviewe

    Neutrino Induced Coherent Pion Production off Nuclei and PCAC

    Get PDF
    We review the Rein--Sehgal model and criticize its use for low energy neutrino induced coherent pion production. We have studied the validity of the main approximations implicit in that model, trying to compare with physical observables when that is possible and with microscopical calculations. Next, we have tried to elaborate a new improved model by removing the more problematic approximations, while keeping the model still reasonably simple. Last, we have discussed the limitations intrinsic to any approach based on the partial conservation of the axial current hypothesis. In particular, we have shown the inability of such models to determine the angular distribution of the outgoing pion with respect to the direction of the incoming neutrino, except for the q2=0q^2= 0 kinematical point.Comment: 19 latex pages, 7 figures, 1 table. Version accepted for publication in Physical Review

    Quasiperiodic Patterns in Boundary-Modulated Excitable Waves

    Get PDF
    We investigate the impact of the domain shape on wave propagation in excitable media. Channelled domains with sinusoidal boundaries are considered. Trains of fronts generated periodically at an extreme of the channel are found to adopt a quasiperiodic spatial configuration stroboscopically frozen in time. The phenomenon is studied in a model for the photo-sensitive Belousov-Zabotinsky reaction, but we give a theoretical derivation of the spatial return maps prescribing the height and position of the successive fronts that is valid for arbitrary excitable reaction-diffusion systems.Comment: 4 pages (figures included

    Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands

    Get PDF
    We analysed recent evolution and meteorological drivers of the atmospheric evaporative demand (AED) in the Canary Islands for the period 1961-2013. We employed long and high-quality time series of meteorological variables to analyse current AED changes in this region and found that AED has increased during the investigated period. Overall, the annual ETo, which was estimated by means of the FAO-56 Penman-Monteith equation, increased significantly by 18.2 mm decade-1 on average, with a stronger trend in summer (6.7 mm decade-1). In this study we analysed the contribution of (i) the aerodynamic (related to the water vapour that a parcel of air can store) and (ii) radiative (related to the available energy to evaporate a quantity of water) components to the decadal variability and trends of ETo. More than 90 % of the observed ETo variability at the seasonal and annual scales can be associated with the variability in the aerodynamic component. The variable that recorded more significant changes in the Canary Islands was relative humidity, and among the different meteorological factors used to calculate ETo, relative humidity was the main driver of the observed ETo trends. The observed trend could have negative consequences in a number of water-depending sectors if it continues in the future

    TET2 overexpression in chronic lymphocytic leukemia is unrelated to the presence of TET2 variations

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License.TET2 is involved in a variety of hematopoietic malignancies, mainly in myeloid malignancies. Most mutations of TET2 have been identified in myeloid disorders, but some have also recently been described in mature lymphoid neoplasms. In contrast to the large amount of data about mutations of TET2, some data are available for gene expression. Moreover, the role of TET2 in chronic lymphocytic leukemia (CLL) is unknown. This study analyzes both TET2 expression and mutations in 48 CLL patients. TET2 expression was analyzed by exon arrays and quantitative real-time polymerase chain reaction (qRT-PCR). Next-generation sequencing (NGS) technology was applied to investigate the presence of TET2 variations. Overexpression of TET2 was observed in B-cell lymphocytes from CLL patients compared with healthy donors (P = 0.004). In addition, in CLL patients, an overexpression of TET2 was also observed in the clonal B cells compared with the nontumoral cells (P = 0.002). However, no novel mutations were observed. Therefore, overexpression of TET2 in CLL seems to be unrelated to the presence of genomic TET2 variations.This work was partially supported by Grants from the Spanish Fondo de Investigaciones Sanitarias FIS 09/01543, PI12/00281, Proyectos de Investigacion del SACYL 355/A/09, COST Action “EuGESMA” (BM0801), Fundación “Manuel Solorzano,” Obra Social Banca Cívica (Caja Burgos), Fundacion Española de Hematología y Hemoterapia (FEHH), and by a Grant (RD12/0036/0069) from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (ERDF) “Una manera de hacer Europa”, and NGS-PTL no. 306242. Maríıa Hernandez-Sánchez is fully suported by an “Ayuda predoctoral de la Junta de Castilla y Leon” by the “Fondo Social Europeo.”Peer Reviewe

    Different Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Air

    Get PDF
    In hydraulic engineering, some researchers have developed different mathematical and numerical tools for a better understanding of the physical interaction between water flow in pipes with trapped air during emptying processes, where they have made contributions on the use of simple and complex models in different application cases. In this article, a comparative study of different experimental and numerical models existing in the literature for the analysis of trapped air in pressurised pipelines subjected to different scenarios of emptying processes is presented, where different authors have develope, experimental, one-dimensional mathematical and complex computational fluid dynamics (CFD) models (two-dimensional and three-dimensional) to understand the level of applicability of these models in different hydraulic scenarios, from the physical and computational point of view. In general, experimental, mathematical and CFD models had maximum Reynolds numbers ranging from 2670 to 20,467, and it was possible to identify that the mathematical models offered relevant numerical information in a short simulation time on the order of seconds. However, there are restrictions to visualise some complex hydraulic and thermodynamic phenomena that CFD models are able to illustrate in detail with a numerical resolution similar to the mathematical models, and these require simulation times of hours or days. From this research, it was concluded that the knowledge of the information offered by the different models can be useful to hydraulic engineers to identify physical and numerical elements present in the air–water interaction and computational conditions necessary for the development of models that help decision-making in the field of hydraulics of pressurised pipelines

    Papel del método biplot canónico en el estudio de compuestos volátiles en quesos de composición variable

    Get PDF
    The canonical biplot method (CB) is used to determine the discriminatory power of volatile chemical compounds in cheese. These volatile compounds were used as variables in order to differentiate among 6 groups or populations of cheeses (combinations of two seasons (winter and summer) with 3 types of cheese (cow, sheep and goat’s milk). We analyzed a total of 17 volatile compounds by means of gas chromatography coupled with mass detection. The compounds included aldehydes and methyl-aldehydes, alcohols (primary, secondary and branched chain), ketones, methyl-ketones and esters in winter (WC) and summer (SC) cow’s cheeses, winter (WSh) and summer (SSh) sheep’s cheeses and in winter (WG) and summer (SG) goat’s cheeses. The CB method allows differences to be found as a function of the elaboration of the cheeses, the seasonality of the milk, and the separation of the six groups of cheeses, characterizing the specific volatile chemical compounds responsible for such differences.El m.todo biplot can.nico (CB) se utiliza para determinar el poder discriminatorio de compuestos qu.micos vol.tiles en queso. Los compuestos vol.tiles se utilizan como variables con el fin de diferenciar entre los 6 grupos o poblaciones de quesos (combinaciones de dos temporadas (invierno y verano) con 3 tipos de queso (vaca, oveja y cabra). Se analizan un total de 17 compuestos vol.tiles por medio de cromatograf.a de gases acoplada con detecci.n de masas. Los compuestos incluyen aldeh.dos y metil-aldeh.dos, alcoholes (primarios de cadena, secundaria y ramificada), cetonas, metil-cetonas y .steres. Los seis grupos de quesos son, quesos de vaca de invierno (WC) y verano (SC); quesos de oveja de invierno (WSh) y verano (SSh) y quesos de cabra de invierno (WG) y verano (SG). El m.todo CB permite la separaci.n de los seis grupos de quesos y encontrar las diferencias en funci.n del tipo y estacionalidad de la leche, caracterizando los compuestos qu.micos vol.tiles espec.ficos responsables de tales diferencias

    Rapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Model

    Get PDF
    A filling operation generates continuous changes over the shape of an air–water interface, which can be captured using a 3D CFD model. This research analyses the influence of different hydro-pneumatic tank pressures and air pocket sizes as initial conditions for studying rapid filling operations in a 7.6 m long PVC pipeline with an irregular profile, using the OpenFOAM software. The analysed scenarios were validated using experimental measurements, where the 3D CFD model was suitable for simulating them. In addition, a mesh sensitivity analysis was performed. Air pocket pressure patterns, water velocity oscillations, and the different shapes of the air–water interface were analysed

    Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air

    Get PDF
    Two-and three-dimensional analyses of transient flows considering the air-water interaction have been a challenge for researchers due to the complexity in the numerical resolution of the multiphase during emptying in pressurized water pipelines. The air-water dynamic interaction of emptying processes can be analyzed using thermodynamic and hydraulic laws. There is a lack in the current literature regarding the analysis of those phenomena using 3D models. In this research, several simulations were performed to study the complex details of two-phase flows. A 3D model was proposed to represent the emptying process in a single pipeline, considering a PVoF model and two-equation turbulence model. The model was numerically validated through 12 experimental tests and mesh sensitivity analysis. The pressure pulses of the air pockets were evaluated and compared with the experimental results and existing mathematical models, showing how the 3D models are useful for capturing more detailed information, such as pressure and velocity patterns of discrete air pockets, distribution of air and water velocity contours, and the exploration of temperature changes for an air pocket expansion
    corecore